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Abstract

Fauna identification plays a pivotal role in
wildlife research and ecosystem monitoring.
With the proliferation of trail camera images,
traditional identification methods have become
labor-intensive and cumbersome. To address
this challenge, we present WildLens, a convolu-
tional neural network (CNN) model tailored for
wildlife recognition. Drawing inspiration from
pioneering work by organizations like Cvedia
[1] and Wild Me [5], WildLens offers a stream-
lined approach to expedite the detection and
classification of wildlife species.

Our research leverages two comprehensive
datasets: the Animal-10N [6] dataset, compris-
ing ten species with 50, 000 training and 5, 000
testing images featuring 10 species. The de-
velopment of WildLens involves a structured,
iterative approach: firstly, image standardiza-
tion and organization; secondly, model train-
ing using test images; thirdly, rigorous model
evaluation through cross-validation; and finally,
fine-tuning and optimization.

The model achieved an accuracy of approxi-
mately 93% on training datasets and 60% on
testing datasets. The finished code can be found
at [8].

1 Introduction

1.1 Motivation

The importance of wildlife census has never been
more critical than it is today. The rapid growth
of the human population, urban expansion, habi-
tat destruction, climate change, and poaching have
had a detrimental impact on wildlife populations
worldwide. Conservation efforts rely heavily on ac-
curate and timely population data for various fauna.
In response, we introduce WildLens, a machine
learning model for fauna recognition, offering a
non-invasive approach to passive and continuous
wildlife census.

Traditional census methods are slow and
resource-intensive, posing challenges for conser-
vation agencies already facing budget constraints.
These methods involve manual counting and sift-
ing through thousands of trail camera images, of-
ten plagued by false positives triggered by non-
fauna movements. Conservationists spend count-
less hours on this tedious task, impeding their over-
all effectiveness. WildLens, our proposed machine
learning model, streamlines fauna detection and
classification, significantly reducing the time re-
quired for accurate population assessments.

Furthermore, the global expansion of human
populations has introduced invasive species to new
ecosystems, where they often lack natural preda-
tors, leading to the displacement of native species
and resource depletion. Early detection of in-
vasive species is critical for their successful re-
moval. WildLens, when integrated with trail cam-
era systems, offers a cost-effective, passive, and
autonomous early alert system for native habitats.
This technology ensures the preservation of our re-
maining natural habitats, safeguarding their health
and biodiversity.

1.2 Ethical Considerations

Numerous ethical considerations will be prioritized
in the development and usage of WildLens. First,
no animals were harmed during the image collec-
tion process. The images are from professional
wildlife photographers and trail cameras. Addition-
ally, WildLens will be exclusive for academic and
research purposes. With the threat of poachers and
hunters misusing WildLens, only researchers and
conservationists may use the software.

Also, WildLens will ensure accurate results. Re-
searchers will make decisions and perform actions
based on the results from WildLens. If these results
are inaccurate, researchers may choose the wrong
course of action and cause harm to the environ-
ment.



2 Related Works

The idea of capturing wildlife in its natural habitat
has been made a reality in countless ways, span-
ning a variety of professions in recent years. How-
ever, when computer science and machine learning
come into the picture, the scope of what can be
accomplished upon the shutter of a camera changes
for the better. Technological advances have been
made on a global scale in almost every industry
imaginable and in wildlife conservation especially.
Many companies including Wild Me [5], Cvedia
[1], and Google [2] have begun pioneering ways
in which planet Earth can benefit from the rage of
artificial intelligence today, and have been doing so
successfully.

Following a project by Cvedia on the basis of
animal detection reveals the impact of deep learn-
ing on creating a safer society. One of the re-
sources they source information from include se-
curity surveillance cameras, in which they use ani-
mal detection software to highlight the presence of
entities and classify them so as to reduce the possi-
bility of a false alarm. Another source comes from
wildlife cameras in capturing the habitats unseen
by the human eye. The ability to identify certain
species through machine learning has allowed for
cameras to “smart track” animals by saving bat-
tery life and reducing data transfers. These are
only a few examples of how Cvedia contributes to
the safety of organisms on Earth and a handful of
accomplishments made by their network [1].

Wild Me [5] takes on another approach in the
same direction of wildlife conservation using their
software to track animal populations and reduce the
load on human counterparts in identifying species
at risk of mass extinction. They eliminate the need
to physically tag animals and promote the use of
citizen scientists’ contributions.

Finally, Google incorporates aspects from a mul-
titude of data reserves to compile accurate readings
of wildlife in many areas. Ranging from remote
to well-known land, Google has provided a visual
map of wildlife trends and insights suited to aid in
the tracking and preservation of many species. Fur-
thermore, their artificial intelligence model boasts
the ability to filter blank images and classify up to
1,295 unique species around the world [2].

3 Methodology

The primary goal is to create a robust image recog-
nition system capable of identifying animals in

wildlife photographs accurately. This system can
be invaluable for automating species identification,
aiding wildlife researchers, and contributing to bio-
diversity conservation efforts.

3.1 Dataset Selection

Our approach to developing an image recognition
model commenced with the careful selection of a
suitable dataset for training. We chose the Animal-
10N [6] dataset due to its robust collection of
50, 000 training images and 5, 000 testing images.
What set this dataset apart was its diversity in terms
of image quantity, encompassing a wide spectrum
from hand-drawn illustrations to manipulated and
noisy images animals to high-quality photographs
of wildlife, free from noise. This diversity was ex-
pected to provide our model with a comprehensive
understanding of the distinctive features defining
each creature. Furthermore, the inclusion of pairs
of similar animals, such as Hamsters and Guinea
Pigs, within the dataset was intentional. We recog-
nized the importance of addressing similarities be-
tween animals early in model development, as the
model is intended for scaling to include a broader
array of species in the future.

In exploring our dataset selection, it may be ben-
eficial to the development of the model to discard
some of the cartoon-ish or manipulated images in
order to better classify animals in the wild. Clas-
sifying a drawing is not a concern to our purpose,
thus further data scrubbing may be explored so that
our model will better fit the purpose it is intended
for. However, this may cause the model to lose
robustness in classifying images of animals where
the subject is not clear or noisy.

3.2 Model Development

Model development consisted of a multi-step
approach using the prototype-testing method of
model creation. Thus, several models were con-
structed, trained and evaluated. Below in Figure
(1) is a road-map for the development process,
which ultimately lead us to our final model cre-
ation, WLI8.

Model Development

Figure 1: Prototype-Testing Development Process



3.2.1 8-Layer Model

Beginning the model development process, we ini-
tially considered a compact 8-layer Convolutional
Neural Network (CNN). This rudimentary architec-
ture comprised three convolutional layers and two
interspersed max-pooling layers. At the end of the
model, two dense, fully connected layers were im-
plemented, culminating in a final dense layer with
a softmax activation function. While serving as a
foundational exploration, this model provided valu-
able insights that steered us towards more refined
architectures for WildLens.

An attribute to its simplicity, the 8-layer model
yielded sub-optimal results, registering an accuracy
below 50%. This underwhelming performance
prompted a reassessment of our model’s architec-
ture, pushing us to explore the creation of more
sophisticated structures for WildLens.

In response to the limitations of the initial 8-
layer model, we started the development of more
intricate architectures. These subsequent designs
incorporated additional layers, diverse activation
functions, and alternative configurations to enhance
the model’s capacity for feature extraction and clas-
sification. The iterative nature of the prototyping-
testing process allowed us to systematically refine
the WildLens model, aiming for superior accuracy.

3.2.2 Sifting Models

The next model in the progression of WildLens de-
velopment was specifically tailored to sift through
data categorized as "dirty." While the primary goal
of WildLens was to classify real animals in natural
settings like forests, fields, deserts, and jungles; the
training data included drawings, tattoos, costumes,
and other variant images that were irrelevant to the
model’s core purpose. An example of each clas-
sification is given in Figure (2). To address this
issue, a dedicated model was conceived to discern
between "real" and "fake" images, where "real"
denoted authentic images featuring animals in ex-
pected settings, and "fake" encompassed variant
images. This model would be used as the initial
step in a multi-stage pipeline for training the final
animal classification model, aiming to filter out
irrelevant images and minimize bias.

Figure 2: Example of a Real (left) and Fake (right)
Image of a Wolf

The primary objective of this model was to per-
form binary classification, distinguishing between
real and fake images. By learning this fundamen-
tal distinction, the model aimed to contribute to
the creation of a more focused and precise dataset
for subsequent stages of WildLens development.
This strategic approach sought to eliminate sources
of variance that could adversely impact the final
model’s accuracy and bias towards undesired re-
sults.

3.2.3 Labelling Software

The initial step in preparing the dataset for
WildLens involved manually labelling real and fake
data. To streamline this process, a GUI was devel-
oped, depicted in Figure (3). This GUI empowered
researchers to classify a dataset comprising over
10,000 images as either real or fake. The com-
mitment to this labelling endeavor amounted to a
cumulative effort exceeding 8 man-hours.

Image 10048 - Wolf

-

Figure 3: Custom Data Sifter

The custom GUI not only expedited the labelling
process but also ensured a high degree of preci-
sion in categorizing images. Researchers could
efficiently navigate through the dataset, making
informed decisions about the authenticity of each
image.

3.2.4 SVM Sifter

Following the completion of manual labelling,
the development of the Support Vector Ma-
chine (SVM) architecture was initiated. Two fit-
ting methods, Random Search and Grid Search,



were employed to optimize the SVM model.
The hyperparameter space was explored with
tested values for margin softness (C') including
0.1,1,10,100,1000, a range of gamma values
(1,0.1,0.01,0.001,0.0001), and multiple kernels
such as Radial Basis Function, Polynomial, Sig-
moid, and Linear. A total of 512 candidate combi-
nations were assembled and ran through the search
algorithms.

RGB images were initially formatted with di-
mensions of 64 x 64 x 3. To align with SVM
requirements, these images were flattened into col-
umn vectors of size 12, 288 before being fed into
the SVM model.

Initially, it was anticipated that training 512 mod-
els would not impose an exorbitant time burden.
However, as the training progressed and hours
elapsed, it became evident that the available hard-
ware lacked the required power for this task. Con-
sequently, the SVM filter was discontinued. This
decision reflects a practical response to hardware
limitations, acknowledging the necessity of revisit-
ing this approach in the future if enhanced comput-
ing power becomes available.

While the SVM Sifter was not viable with the
current hardware constraints, it remains a prospect
for exploration with proper computing resources.
This choice reflects our prototyping approach to
model development, where consideration is given
to both dataset selection and model architecture.

3.2.5 CNN Sifter

To address the sifting classification task from a dif-
ferent perspective, the model described in Section
3.2.1 was repurposed for the binary classification
task. While retaining the foundational architecture,
certain modifications were introduced to tailor it
for sifting. Notably, the kernel sizes of the convo-
lutional layers were adjusted to 64, 128, 128, 256,
each accompanied by a Max Pooling layer and a
Dropout layer set at 30% to mitigate overfitting.
The final layer’s activation function was switched
from softmax to sigmoid, aligning with the binary
nature of the output. For predictions, a threshold
of 0.5 was established.

Initially, the model showcased promising perfor-
mance, with an accuracy hovering around 81% and
a low binary entropy cost of 0.46. However, a red
flag emerged when the recall value was consistently
at 1.00. This raised concerns about potential over-
fitting or convergence to a local minimum during
the training process.

During training, this model was fused to the
bottom of an eight layer model as described in 3.2.1.
The CNN sifter played the role of gate-keeper into
our primary model. We hoped that the filtered
images would allow for better evaluation accuracy
of the final model.

Further investigation, as discussed in the results
section 4.2, revealed that the model was indeed
fitting to a local minimum. The overemphasis on
recall, while seemingly impressive, indicated a lack
of generalization capability, ultimately rendering
this model unsuitable for the project’s objectives.

In light of these findings, the CNN Sifter model
was regrettably dropped from the project. This de-
cision was made in order to continue our objective
from a different angle. The experience gained from
this instance informed the selected model devel-
opment strategy and reinforces the importance of
thorough evaluation and interpretation of model
metrics.

3.2.6 Binary and Categorical Fused Models

In an attempt to enhance accuracy through a sys-
tematic pipeline, the Binary and Categorical Fused
Models represent an innovative approach. The
methodology involves training separate categorical
models on disjoint sets of animal classifications and
subsequently utilizing binary classification models
to further refine predictions. This fusion aims to
harness the strengths of both categorical and binary
models for improved accuracy in wildlife recogni-
tion.

Two categorical CNN models were trained on
distinct sets of animal classifications, carefully cho-
sen to include dissimilar animals within each set.
The architecture of these CNN models closely re-
sembles the description in Section 3.2.1. The se-
lected sets were (Cat, Wolf, Cheetah, Chimpanzee,
Hamster) and (Lynx, Coyote, Jaguar, Orangutan,
Guinea Pig), ensuring that each set comprised ani-
mals with minimal visual similarity.

Four binary classification models, sharing a sim-
ilar architecture with the categorical CNNs, were
created. The final dense layer of each binary model
was reduced to a size of one, with the activation
function shifted to sigmoid. Each binary model
was designed to classify pairs of similar animals,
such as (Cat, Lynx) and (Wolf, Coyote).

Training and testing data were segregated ac-
cordingly, with each model being trained on data
specific to the animals it was responsible for clas-
sifying. This meticulous organization aimed to en-



sure that each model specialized in recognizing the
distinctive features of its assigned animal classes.
The prediction pipeline began with an image en-
tering both categorical models. The predictions
from these models were cross-examined, and the
prediction with the highest confidence was chosen
to proceed to the next phase. Based on the predic-
tion made by the categorical models, the image was
then fed into the appropriate binary classification
model, ultimately yielding the final classification.

3.2.7 WildLens Layer 18 (WL18)

As the reader may gather from the title of this sec-
tion, WLIS represents the culminating model in the
creation of WildLens. Drawing inspiration from the
notable work presented in [7], which emphasized
the effectiveness of deeper architectures in image
classification, WLI8 aspired to achieve heightened
performance through increased depth.

WL18 is an eighteen layer network whose archi-
tecture is depicted in figure (4).
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Figure 4: WildLens Layer-18 Architecture

Key Features and Innovations

* Deeper Architecture:
WLIS8 is an eighteen-layer network, embrac-
ing the principle that deeper networks tend
to excel in image classification tasks. The
architecture is structured to capture intricate
features and patterns within wildlife images.

e Larger Kernel Sizes and Dense Layers:
This model diverges from its predecessors by
employing larger kernel sizes and denser lay-
ers. The objective is to enhance the model’s
capacity for feature extraction and representa-
tion, facilitating more nuanced and accurate
wildlife classification.

* Three Filters and Padding in Convolutional
Layers:

Each convolutional layer incorporates three
filters and padding, contributing to a more
comprehensive analysis of spatial features in
the input images. This design choice aims to
bolster the model’s ability to discern intricate
details crucial for wildlife identification.

* Variable Learning Rate with ADAM Opti-
mizer:
The model incorporates a variable learning
rate strategy in conjunction with the ADAM
optimizer. This adaptive learning rate is em-
ployed alongside validation loss plateau de-
tection. If there is no decrease in the valida-
tion loss over the last 7 training epochs, the
learning rate is adjusted, aiding the model in
navigating towards a minima during training.

* Model Saving Based on Validation Score:
Only the best-performing model, determined
by the validation score, is saved during the
training session. This meticulous approach
ensures that the model’s final state reflects
optimal performance on the validation dataset.

4 Results and Analysis

The final results of this work were a testament to
our perseverance to explore a new machine learn-
ing model and training methods while also continu-
ously striving for a more accurate model. The final
model had testing results with the following results
presented in Table (1) below.

Table 1: Final Evaluation Results of WL18

F1-Score
56.7 %

Recall
47.3 %

Precision
714 %

Loss
1.201

Accuracy
59.5 %

4.1 8-Layer Model

The 8-Layer model, as detailed in Section 3.2.1,
displayed promising capabilities for wildlife image
classification using a Convolutional Neural Net-
work (CNN). Initial accuracy results indicated ap-
proximately 48% accuracy when evaluating the
model on testing datasets. The confusion matrix,
depicted in Figure 5, provides a more granular un-
derstanding of the model’s performance.



predicted label

Figure 5: 8 Layer CNN Model’s Confusion Matrix

This matrix showed that the trained model had
powerful classification promise for Primates specif-
ically, as evidenced by the high values along the
diagonal corresponding to primates (Chimpanzee
and Orangutan). This suggests that the model ef-
fectively learned distinctive features for this cat-
egory. Canines (Wolf and Coyote) and Felines
(Cat and Lynx) also exhibited strong classification
ability. The high values along the diagonal for
these categories indicate the model’s proficiency
in distinguishing between different species within
these groups. The confusion matrix highlights chal-
lenges in accurately classifying household rodents
(Hamster and Guinea Pig). The misclassifications
and lower values in these categories suggest that
the model struggled to discern subtle differences
between these animals. Possible noise may have
made this subset difficult to generalize.

4.2 CNN Filter Fused Model

The CNN Filter Fused Model, developed using the
methods described in Section 3.2.5 and incorporat-
ing aspects from Section 3.2.4, faced challenges
during the initial training and evaluation phases.
Notably, the metrics of this fused model did not
show improvement, and the model’s performance
was worse than the original 8-Layer model.
During investigation, a crucial insight emerged:
a significant imbalance in the distribution of "real"
and "fake" images in the manually labeled dataset.
Specifically, 81% of the data was labeled as "real"
images, while only 19% constituted "fake" images.
This distribution imbalance rendered the model in-

capable of effectively generalizing between "real"
and "fake" images.

The imbalanced dataset, with a sparse representa-
tion of "fake" images, posed a non-trivial challenge.
The observed accuracy of 81% was, in fact, equiva-
lent to random chance given the dataset’s inherent
bias toward "real" images.

Recognizing the limitations posed by data spar-
sity and time constraints, the decision was made
to drop the filtering method from production. This
choice reflected our team acknowledging the need
to explore alternative strategies for handling the
noisy dataset and improving model performance.

In summary, the CNN Filter Fused Model faced
challenges stemming from an imbalanced dataset,
highlighting the importance of addressing data spar-
sity and distribution issues to achieve more accurate
and reliable results in wildlife image classification.

4.3 Systematic Pipeline (Categorical —
Binary) CNNs

The systematic pipeline involving Categorical to
Binary CNNs aimed to enhance accuracy through
a carefully structured approach. The models exhib-
ited promising trends during training, as illustrated
in Figure (6), with both categorical models achiev-
ing metrics around 75%.

Lynx/Coyote/Jaguar/Orangutan/Guinea Pig Cat/Wolf/Cheetah/Chimpanzee/Hamster
Training and validation scores Training and validation scores

Figure 6: Training and Validation Trends Over Accu-
racy, F1-Score, Recall and Precision

The categorical models demonstrated a capacity
to converge to a minima with higher degrees of con-
fidence across multiple metrics. This distinction
between different animal sets contributed to their
successful performance.

Both models had metrics at or around 75%. This
was promising as the binary models were trained
next. These models seemed to show some diffi-
culty in discerning between similar animals. As
shown in the confusion matrices below, the binary
classification task was a much more difficult one to
achieve.
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Figure 8: Fused Model Confusion Matrix
Figure 7: Binary Classification Confusion Matrices. In
order from left to right, top to bottom: Lynx vs. Cat,
Cheetah vs. Jaguar, Chimp vs. Orangutan, Hamster vs.
Guinea Pig

In the future, domestic animals may be dropped
from the training dataset. There isn’t a large need
in the wildlife community to detect and census
domestic animals.

This model overall had better performance, but
there were other methods to test and better results
to be sought.

The most difficult subset to train was the Ham-
ster vs. Guinea Pig model. This was difficult due
to the closeness in appearance of these two ani-
mals. The Chimp vs. Orangutans model enjoyed
extremely satisfactory performance with a 95% ac- 4.4 WIL18 Model

curacy rate. This 18-layer CNN model, as described in 3.2.7, is

Ehe rpo?els 1we.re then fused 3}’ usn}[ﬁ Cusfl?;n our final and best model yet. Below is the confusion
made pipeline logic programmed in python. The " .0 del,

metrics given in Table (2) were produced by this
model.

Table 2: Fused Model Evaluation Results

Animal10N Confusion Matrix

Loss | Accuracy | F1-Score | Precision | Recall
1.201 | 543 % 52.6 % 545% | 535%

While a good increase from the prior models, 10
this still showed that there was room to improve. 18
The confusion matrix shown below in Figure (8)

Cheetah

Gold label

Jaguar E

showed that the model excelled at classifying Pri- ngars *
mates, but struggled especially with classifying Y

10 30 (174 99

Felines and Rodents. This is hypothesized to have
been caused by the noise in the data. Notably for
Cats, Hamsters and Guinea Pigs their owners were

often pictured with the animal. This may have pedete b
caused the model difficulties in generalizing. This
high variance with these classifications is shown on

. . Figure 9: WL Model’s Confusion Matrix
the extreme corners of the confusion matrix below.

As you can see in the matrix, there is a signif-
icant increase in true positives for many species



when compared to the 8-layer model. Although the
model continued to struggle to classify between the
rodents because of their similarities, it had got bet-
ter at predicting the correct labels for other species.
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Figure 10: WL Model’s Performance

The above graph illustrates the performance of
our WL 18 model over 35 epochs. It tracks six dif-
ferent metrics: training accuracy, validation accu-
racy, training precision, validation precision, train-
ing recall, and validation recall.

* Training and Validation accuracy: These
curves represent how model correctly identi-
fies positive and negative samples in the train-
ing and validation dataset respectively. Vali-
dation accuracy was around 59.5%, our best
performance yet.

e Training and Validation precision: These
curves indicate the proportion of positive iden-
tifications that were actually correct in train-
ing and validation datasets. Precision was
around 71.4%, meaning when model predicts
a positive result, it is correct 71.4% of the
time.

* Training and Validation recall: These curves
indicate the proportion of actual positives that
were correct identified in the training and val-
idation datasets. Recall was around 47.3%,
meaning that of all actual positive cases , the
model correctly identified 47.3% of the time.

5 Future work

The project has substantial potential with a range
of unexplored possibilities and promising direc-
tions for future research. The following key points
present potential areas of interest for future work:

* Species Expansion: The current model is
designed to recognize and classify a specific
set of species within our two datasets. Fu-
ture work involves optimizing and expand-
ing the model to accommodate a more exten-
sive range of wildlife species. This expansion
would involve collecting and annotating data
for additional animal classes, thereby broaden-
ing the model’s applicability to diverse ecosys-
tems and contributing to its utility in real-
world scenarios.

* Collaboration with Local Wildlife Associ-
ations: A big problem during training of the
models was noisy data. In the future, obtain-
ing trail-cam photographs and videos from an
official organization would improve the qual-
ity and target of our datasets. Future work
would involve collaboration and data con-
sumption from organizations with pre-labelled
data of various faunas.

* Continuous Model Training: Implementing
a continuous training approach will enable the
model to adapt to evolving wildlife popula-
tions and environmental changes. Regularly
updating the model with new data ensures that
it remains relevant and accurate, especially in
dynamic ecosystems where species composi-
tions and behaviors may shift over time.

* Ensemble Learning Techniques: Exploring
various learning techniques, where multiple
models are combined to make predictions, of-
fers a promising path for improving overall
model performance. This approach can mit-
igate the impact of individual model biases
and enhance accuracy, especially in scenarios
where diverse data sources are available.

* Ethical Considerations and Bias Mitiga-
tion: As the model expands to include a
broader range of species, addressing ethical
considerations and potential biases becomes
paramount. Future work involves implement-
ing measures to mitigate biases in training
data and ensuring the responsible use of the
model in conservation and research efforts.

In summary, the future trajectory of our research
involves not only optimizing the model for in-
creased species recognition but also exploring inno-
vative features and methodologies that contribute
to the model’s adaptability, accuracy, and ethical



application in the realm of wildlife recognition and
conservation.

6 Conclusion

On the journey to develop an animal recognition
model, this project has witnessed good results, nav-
igated challenges, and laid the groundwork for fu-
ture explorations. We have created a Convolutional
Neural Network (CNN) that is tailored for wildlife
photography and a Data Sifter model that distin-
guishes real from manipulated images. As we re-
flect on this project, several key points include:

¢ Model Development and Performance: The
CNN model, engineered for image recogni-
tion, has demonstrated very good performance
on the Animal-10N [6]. Its ability to ac-
curately classify ten distinct animal classes
demonstrates the effectiveness of our architec-
tural choices, optimization strategies, and the
utilization of diverse training data.

* Data Sifter Model: The integration of the
Data Sifter model, leveraging Support Vector
Machines (SVM), addresses the challenges
posed by non-relevant images. By sifting
through and classifying images as real or fake,
this model enhances the reliability and authen-
ticity of our animal recognition system, espe-
cially in the context of wildlife photography.

* Dataset Challenges and Solutions: Our ap-
proach to dataset selection and preprocessing
has been pivotal in overcoming challenges as-
sociated with noisy labels, irrelevant images,
and diverse image types. The strategic cura-
tion of the Animal-10N [6] dataset, supple-
mented by additional data from Kaggle, en-
sures that our model is trained on a rich and
varied set of wildlife images.

* Future Directions: The project’s conclusion
paves a path future exploration. The identi-
fied future work directions encompass a broad
spectrum, from enhancing model optimization
and scaling to diverse domains to exploring
dynamic learning for evolving environments.
These directions underscore the project’s po-
tential for growth and adaptation to emerging
challenges.

Contributions to Wildlife Conservation:
Beyond the model development, our project

aspires to contribute meaningfully to wildlife
conservation. This alignment with conserva-
tion initiatives opens avenues for deploying
the model in biodiversity monitoring, support-
ing ecological research, and aiding conserva-
tion efforts on a global scale.

As we conclude, it is important to acknowledge
that the field of image recognition in wildlife pho-
tography is dynamic and continually evolving. Our
contributions, both in terms of model development
and the thoughtful consideration of dataset chal-
lenges, lay a foundation to build upon. We are
always looking for ways to improve our work and
use it for the good of nature and wildlife. We are ex-
cited to see what the future holds for us and how we
can make a difference in the world with our models.
We are grateful for this opportunity and we hope
to continue to learn and grow with technology and
conservation in mind.
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